Qualcomm embeds deeper into the 5G Open RAN ecosystem with Rel. 16 small cell platform and accelerator card
28
Jun
Qualcomm embeds deeper into the 5G Open RAN ecosystem with Rel. 16 small cell platform and accelerator card
RCR Wireless News, JUNE 28, 2021
The floodgate of Mobile World Congress 2021 announcements has opened! 5G Open RAN will undoubtedly be the biggest theme among them. On the first day of the event, the 5G behemoth Qualcomm announced the world’s first 3GPP Rel. 16 Small Cell platform FSM200xxas well as a new5G Distributed Unit (DU) X100 Accelerator Card. Both are set to give the ecosystem a big boost and accelerate the move toward 5G virtual / Open RAN while positioning Qualcomm as a strong infrastructure player.
Rel. 16 Small cells increase capacity and kickstart Industry 4.0
FSM 200xx improves upon its predecessor—the first-gen FSM 100xx—in many ways to further enhance its use in high traffic areas such as airports, shopping malls, venues, enterprise and educational campuses, and many others. Its timing could not be more perfect, as operators, after initial launches, are looking to substantially expand their 5G footprint. FSM200xx’s wider bandwidth support (up to 200 MHz) is extremely useful for catering to the burgeoning traffic that the rapidly growing 5G device penetration will bring, and its ability to support almost all commercial mmWave bands makes this a global solution. Its smaller form factor and high power efficiency make deployments easy and flexible, be it indoors or outdoors.
While FSM200xx can make a big difference immediately after deployment, I am more psyched about its potential to kick start Industry 4.0—the famed next industrial revolution. 5G’s journey on Industry 4.0 track gets a big boost from 3GPP Rel. 16. This release firmly establishes 5G’s path for industry verticals, expanding its reach far beyond smartphones. 5G will play a critical role in making future factories untethered, modular, and highly flexible, a key component of the Industry 4.0 vision.
When you think of assembly lines or industrial campuses, small cells will be the mainstay for building industrial 5G networks. These could be indoor small cells covering factory floors connecting a plethora of robots, machines, and control infrastructure. Or could also be outdoor small cells covering the entire factory campus. So, it makes perfect sense to commercialize the pioneering Rel. 16 features first on a small cell platform. For example, features such as Time Sensitive Networking (TSN), and enhanced Ultra Reliable Low Latency Communication (eURLLC) that enable replacement of wired industrial ethernet with wireless, are the first major step toward making factories modular and flexible.
That is exactly what Qualcomm’s FSM200x does. Apart from supporting these key features, It has enough processing capability and flexibility to support a wide range of features that may be required in future factories. This is important because the industrial transformation is still in its infancy, and many of the requirements are not yet fully understood. A capable and flexible platform offers futureproofing and enables a robust evolution path.
The bottom line is, the feature-rich, high-capacity FSM200x small cell platform is ideal to support the coverage, capacity, or future needs of any deployment—be it connecting hundreds of machines with thousands of sensors in factories, or thousands of people and devices in high-traffic hotspots.
5G DU X100 Accelerator Card simplifies and accelerates virtual/Open RAN deployments
Distributed Unit (DU) is one of the key parts of any virtual/Open RAN system, as it manages latency-sensitive functions such as demodulation, beamforming, channel coding, etc.
Side note: If you would like to know more about virtual / Open RAN architecture check out this article.
The biggest reason why virtualization of RAN did not happen till now, while virtual core networks have been mainstream for some time, is these latency-sensitive functions. General-purpose processors are highly inefficient for such workloads. The industry has come to realize that a dedicated hardware accelerator is the only feasible solution. These accelerators could be FPGAs (Field Programmable Gate Arrays), ASICs (Application Specific ICs), GPUs, or a combination thereof. They can be implemented either in “look-aside” or “inline” modes. In the look-aside mode, accelerators interact only with the main processor, and this mode is suited for offloading only some select functions, such as Forward Error Correction (FEC). There are already a few FPGA-based look-aside accelerators in the market.
In the inline mode, accelerators directly interact with the main processor as well as the radio, and hence this mode is perfect for offloading an entire data pipeline. As 5G virtual /Open RAN 5G networks get denser, carrying large amounts of traffic, and when advanced features such as carrier aggregation, Massive MIMO are supported, inline accelerators become a necessity.
Qualcomm’s 5G DX 100 card is an inline accelerator that can offload almost entirely the latency-sensitive data pipeline, often referred to as “High-L1 processing.” It is built on Qualcomm’s previously announced DU platform. That means the new card comes with all of Qualcomm’s famed and proven 5G expertise built-in.
The card comes in an industry-standard PCIe form-factor and interface, which means it can work with any server platform. This is a major advantage, as the industry is still evolving, and being open gives operators and OEMs more choice in selecting the right server platform for their needs.
Suffice to say that Qualcomm 5G DX100 Accelerator Cars is a powerful, all-in solution that solves the complexity of DU functionality, and significantly accelerates virtualized and Open RAN infrastructure development.
In closing
Defying the scenic view of naysayers that vRAN and Open RAN are just hype, there has been tremendous traction and real progress on the ground. These architectures have become a de-facto option for greenfield networks and are fast becoming a mainstream option for brown-field operators. These two new Qualcomm offerings simplify the complexity, accelerate the transition, and bring the Industry 4.0 vision that much closer.
For more articles like this, and for an up-to-date analysis of the latest mobile and tech industry news, sign-up for our monthly newsletter at TantraAnalyst.com/Newsletter, and listen to our Tantra’s Mantra podcast.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
0 comments